\qquad Period: \qquad Date: \qquad

Adding and Subtracting Fractions Exit Quiz

Part A Instructions: Choose the option that completes the sentence or answers the question.

1. Which of these cannot be written as a fraction?
a. 1.5
b. 0.554
c. $\sqrt{3}$
d. None of these
2. If the denominators of all the fractions in a sum or difference are same, which of these methods can be useful in quickly solving the sum or difference?
a. Recursive math
b. Mental math
c. Statistical math
d. None of these
3. If the denominators of all the fractions to be added or subtracted are different, which of these methods can be useful in solving the sum or difference?
a. HCF
b. GCF
c. LCM
d. None of these
4. The sum of $\frac{3}{2}$ and $\frac{14}{5}$ is:
a. $\frac{43}{10}$
b. $\frac{17}{10}$
c. $\frac{17}{5}$
d. None of these

Part B Instructions: Answer the question below.
5. Find the $\operatorname{sum} \frac{n}{3}+\frac{n}{5}$.
\qquad Period: \qquad Date: \qquad

Adding and Subtracting Fractions Exit Quiz

Answers

Part A Instructions: Choose the option that completes the sentence or answers the question.

1. Which of these cannot be written as a fraction?
a. 1.5
b. 0.554
c. $\sqrt{3}$
d. None of these
2. If the denominators of all the fractions in a sum or difference are same, which of these methods can be useful in quickly solving the sum or difference?
a. Recursive math
b. Mental math
c. Statistical math
d. None of these
3. If the denominators of all the fractions to be added or subtracted are different, which of these methods can be useful in solving the sum or difference?
a. HCF
b. GCF
c. LCM
d. None of these
4. The sum of $\frac{3}{2}$ and $\frac{14}{5}$ is:
a. $\frac{43}{10}$
b. $\frac{17}{10}$
c. $\frac{17}{5}$
d. None of these

Part B Instructions: Answer the question below.
5. Find the sum $\frac{n}{3}+\frac{n}{5}$.
$L C M$ of 3 and 5 is $3 \times 5=15$.

$$
\begin{aligned}
& \frac{n}{3}+\frac{n}{5}=\frac{n(5)+n(3)}{15} \\
& \frac{5 n+3 n}{15}=\frac{8 n}{15} \\
& \frac{n}{3}+\frac{n}{5}=\frac{8 n}{15}
\end{aligned}
$$

