\qquad Date: \qquad

Pythagorean Theorem Assignment

Identify whether the following triangle side lengths are from a right triangle using Pythagorean Theorem.

1. $2,5,6$
2. $9,16,15$
3. $8,15,17$
4. $3,4,5$
5. $6,7,10$
6. $7,24,25$
\qquad Date: \qquad

Pythagorean Theorem Assignment

Find the Hypotenuse side of the following right triangles.
7. $a=2, b=3$
9. $a=4, b=6$
11. $a=3, b=7$
8. $a=5, b=6$
10. $a=2, b=5$
12. $a=3, b=8$
\qquad Date: \qquad

Pythagorean Theorem Assignment

Find the missing sides of the following right triangles given their hypotenuse and one other side.
13. $a=2, c=9$
14. $c=11, b=6$
15. $a=4, c=10$
16. $c=12, b=5$
17. $a=3, c=8$
18. $c=15, b=8$
\qquad Period: \qquad Date: \qquad

Pythagorean Theorem Assignment

Solve the following word problems

19. The base of a $32-\mathrm{m}$ ladder is 10 m from the building. How high above the ground is the top of the ladder?
20. Movers are trying to take a large table through a door with the given dimensions. They want to know the length of diagonal $A B$. What is the length?

\qquad
\qquad
\qquad

Pythagorean Theorem Assignment

Answers:

Identify whether the following triangles is a right triangle using Pythagorean Theorem.

1. 2,5,6

Solution:
$2^{2}+5^{2}=6^{2}$
$4+25=36$
$29 \neq 36$
Not a right triangle
2. $8,15,17$

Solution:
$8^{2}+15^{2}=17^{2}$
$64+225=289$
$289=289$
Right Triangle
5. 6,7,10

Solution:
$6^{2}+7^{2}=10^{2}$
$36+49=100$
$85 \neq 100$
Not a right triangle
2. $9,16,15$

Solution:
$9^{2}+15^{2}=16^{2}$
$81+225=256$
$306 \neq 256$
Not a right triangle
4. $3,4,5$

Solution:
$3^{2}+4^{2}=5^{2}$
$9+16=25$
$25=25$
Right triangle
6. 7,24,25

Solution:
$7^{2}+24^{2}=25^{2}$
$49+576=625$
$625=625$
Right triangle

Find the Hypotenuse side of the following right triangle.
7. $a=2, b=3$

Solution:
$c^{2}=a^{2}+b^{2}$
$c=\sqrt{a^{2}+b^{2}}$
$c=\sqrt{2^{2}+3^{2}}$
$c=\sqrt{4+9}$
$c=\sqrt{13}$
8. $a=5, b=6$

Solution:
$c^{2}=a^{2}+b^{2}$
$c=\sqrt{a^{2}+b^{2}}$
$c=\sqrt{5^{2}+6^{2}}$
$c=\sqrt{25+36}$
$c=\sqrt{61}$
9. $a=4, b=6$

Solution:
$c^{2}=a^{2}+b^{2}$
$c=\sqrt{a^{2}+b^{2}}$
$c=\sqrt{4^{2}+6^{2}}$
$c=\sqrt{16+36}$
$c=\sqrt{52}$
$c=2 \sqrt{13}$
\qquad
\qquad

Pythagorean Theorem Assignment

11. $a=3, b=7$

Solution:
$c^{2}=a^{2}+b^{2}$
$c=\sqrt{a^{2}+b^{2}}$
$c=\sqrt{3^{2}+7^{2}}$
$c=\sqrt{9+49}$
$c=\sqrt{58}$
12. $a=3, b=8$

Solution:
$c^{2}=a^{2}+b^{2}$
$c=\sqrt{a^{2}+b^{2}}$
$c=\sqrt{3^{2}+8^{2}}$
$c=\sqrt{9+64}$
$c=\sqrt{73}$

Find the missing sides of the following right triangle given their hypotenuse and one other side.
13. $a=2, c=9$
$c^{2}=a^{2}+b^{2}$
$b^{2}=c^{2}-a^{2}$
$b=\sqrt{c^{2}-a^{2}}$
$b=\sqrt{9^{2}-2^{2}}$
$b=\sqrt{81-4}$
$b=\sqrt{77}$
15. $a=4, c=10$
$c^{2}=a^{2}+b^{2}$
$b^{2}=c^{2}-a^{2}$
$b=\sqrt{c^{2}-a^{2}}$
$b=\sqrt{10^{2}-4^{2}}$
$b=\sqrt{100-16}$
$b=\sqrt{84}$
17. $a=3, c=8$
$c^{2}=a^{2}+b^{2}$
$b^{2}=c^{2}-a^{2}$
$b=\sqrt{c^{2}-a^{2}}$
$b=\sqrt{8^{2}-3^{2}}$
$b=\sqrt{64-9}$
$b=\sqrt{55}$
14. $c=11, b=6$
$c^{2}=a^{2}+b^{2}$
$a^{2}=c^{2}-b^{2}$
$a=\sqrt{c^{2}-b^{2}}$
$a=\sqrt{11^{2}-6^{2}}$
$a=\sqrt{121-36}$
$a=\sqrt{85}$
16. $c=12, b=5$
$c^{2}=a^{2}+b^{2}$
$a^{2}=c^{2}-b^{2}$
$a=\sqrt{c^{2}-b^{2}}$
$a=\sqrt{12^{2}-5^{2}}$
$a=\sqrt{144-25}$
$a=\sqrt{119}$
18. $c=15, b=8$
$c^{2}=a^{2}+b^{2}$
$a^{2}=c^{2}-b^{2}$
$a=\sqrt{c^{2}-b^{2}}$
$a=\sqrt{15^{2}-8^{2}}$
$a=\sqrt{225-64}$
$a=\sqrt{161}$
\qquad Period: \qquad Date: \qquad

Pythagorean Theorem Assignment

19. The base of a $32-\mathrm{m}$ ladder is 10 m from the building. How high above the ground is the top of the ladder?

Given: $\mathrm{c}=32 \mathrm{~m}, \mathrm{a}=10 \mathrm{~m}$
Solution:
$b=\sqrt{c^{2}-a^{2}}$
$b=\sqrt{32^{2}-10^{2}}$
$b=\sqrt{1024-100}$
$b=\sqrt{924}$ or 30.39 m
20. Movers are trying to take a large table through a door with the given dimensions. They want to know the length of diagonal $A B$. What is the length?

Given: a: $36 \mathrm{~cm}, \mathrm{~b}: 80 \mathrm{~cm}$
Solution:
$c^{2}=a^{2}+b^{2}$
$c=\sqrt{a^{2}+b^{2}}$
$c=\sqrt{4^{2}+10^{2}}$
$c=\sqrt{16+100}$
$c=\sqrt{116}$ or $2 \sqrt{29}$

