Name: ______ Period: _____ Date: _____

Pythagorean Theorem Assignment

Identify whether the following triangle side lengths are from a right triangle using Pythagorean Theorem.

1. 2,5,6

2. 9,16,15

2. 8, 15,17

4. 3,4,5

5. 6,7,10

6. 7, 24,25

Pythagorean Theorem Assignment

Find the Hypotenuse side of the following right triangles.

7.
$$a = 2, b = 3$$

8.
$$a = 5, b = 6$$

9.
$$a = 4, b = 6$$

10.
$$a = 2, b = 5$$

11.
$$a = 3, b = 7$$

12.
$$a = 3, b = 8$$

Pythagorean Theorem Assignment

Find the missing sides of the following right triangles given their hypotenuse and one other side.

13.
$$a = 2, c = 9$$

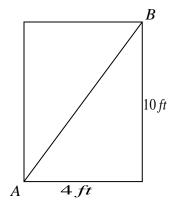
14.
$$c = 11, b = 6$$

15.
$$a = 4, c = 10$$

16.
$$c = 12, b = 5$$

17.
$$a = 3, c = 8$$

18.
$$c = 15, b = 8$$


Name:	Period:	Date:

Pythagorean Theorem Assignment

Solve the following word problems

19. The base of a 32-m ladder is 10 m from the building. How high above the ground is the top of the ladder?

20. Movers are trying to take a large table through a door with the given dimensions. They want to know the length of diagonal AB. What is the length?

Name: ______ Period: ______ Date: _____

Pythagorean Theorem Assignment

Answers:

Identify whether the following triangles is a right triangle using Pythagorean Theorem.

- 1. 2,5,6 Solution: $2^2 + 5^2 = 6^2$ 4 + 25 = 36 $29 \neq 36$
- Not a right triangle
- 2. 8, 15,17 Solution: $8^2 + 15^2 = 17^2$ 64 + 225 = 289 289 = 289Right Triangle
- 5. 6,7,10 Solution: $6^2 + 7^2 = 10^2$ 36 + 49 = 100 $85 \neq 100$ Not a right triangle

- 2. 9,16,15 Solution: $9^2 + 15^2 = 16^2$ 81 + 225 = 256 $306 \neq 256$ Not a right triangle
- 4. 3,4,5 Solution: $3^2 + 4^2 = 5^2$ 9 + 16 = 25 25 = 25Right triangle
- 6. 7, 24,25 Solution: $7^2 + 24^2 = 25^2$ 49 + 576 = 625 625 = 625Right triangle

Find the Hypotenuse side of the following right triangle.

- 7. a = 2, b = 3Solution: $c^{2} = a^{2} + b^{2}$ $c = \sqrt{a^{2} + b^{2}}$ $c = \sqrt{2^{2} + 3^{2}}$ $c = \sqrt{4 + 9}$ $c = \sqrt{13}$
- 9. a = 4, b = 6Solution: $c^2 = a^2 + b^2$ $c = \sqrt{a^2 + b^2}$ $c = \sqrt{4^2 + 6^2}$ $c = \sqrt{16 + 36}$ $c = \sqrt{52}$ $c = 2\sqrt{13}$

- 8. a = 5, b = 6Solution: $c^{2} = a^{2} + b^{2}$ $c = \sqrt{a^{2} + b^{2}}$ $c = \sqrt{5^{2} + 6^{2}}$ $c = \sqrt{25 + 36}$ $c = \sqrt{61}$
- 10. a = 2, b = 5Solution: $c^{2} = a^{2} + b^{2}$ $c = \sqrt{a^{2} + b^{2}}$ $c = \sqrt{2^{2} + 5^{2}}$ $c = \sqrt{4 + 25}$ $c = \sqrt{29}$

Name:

Period: _____ Date: ____

Pythagorean Theorem Assignment

11.
$$a = 3, b = 7$$

Solution:
 $c^2 = a^2 + b^2$
 $c = \sqrt{a^2 + b^2}$
 $c = \sqrt{3^2 + 7^2}$
 $c = \sqrt{9 + 49}$
 $c = \sqrt{58}$

12.
$$a = 3, b = 8$$

Solution:
 $c^2 = a^2 + b^2$
 $c = \sqrt{a^2 + b^2}$
 $c = \sqrt{3^2 + 8^2}$
 $c = \sqrt{9 + 64}$
 $c = \sqrt{73}$

Find the missing sides of the following right triangle given their hypotenuse and one other side.

13.
$$a = 2, c = 9$$

 $c^2 = a^2 + b^2$
 $b^2 = c^2 - a^2$
 $b = \sqrt{c^2 - a^2}$
 $b = \sqrt{9^2 - 2^2}$
 $b = \sqrt{81 - 4}$
 $b = \sqrt{77}$

14.
$$c = 11, b = 6$$

 $c^2 = a^2 + b^2$
 $a^2 = c^2 - b^2$
 $a = \sqrt{c^2 - b^2}$
 $a = \sqrt{11^2 - 6^2}$
 $a = \sqrt{121 - 36}$
 $a = \sqrt{85}$

15.
$$a = 4, c = 10$$

 $c^2 = a^2 + b^2$
 $b^2 = c^2 - a^2$
 $b = \sqrt{c^2 - a^2}$
 $b = \sqrt{10^2 - 4^2}$
 $b = \sqrt{100 - 16}$
 $b = \sqrt{84}$

16.
$$c = 12, b = 5$$

 $c^2 = a^2 + b^2$
 $a^2 = c^2 - b^2$
 $a = \sqrt{c^2 - b^2}$
 $a = \sqrt{12^2 - 5^2}$
 $a = \sqrt{144 - 25}$
 $a = \sqrt{119}$

17.
$$a = 3, c = 8$$

 $c^2 = a^2 + b^2$
 $b^2 = c^2 - a^2$
 $b = \sqrt{c^2 - a^2}$
 $b = \sqrt{8^2 - 3^2}$
 $b = \sqrt{64 - 9}$
 $b = \sqrt{55}$

18.
$$c = 15, b = 8$$

 $c^2 = a^2 + b^2$
 $a^2 = c^2 - b^2$
 $a = \sqrt{c^2 - b^2}$
 $a = \sqrt{15^2 - 8^2}$
 $a = \sqrt{225 - 64}$
 $a = \sqrt{161}$

Name: _____ Period: _____ Date: _____

Pythagorean Theorem Assignment

19. The base of a 32-m ladder is 10 m from the building. How high above the ground is the top of the ladder?

Given: c = 32m, a = 10 m

Solution:

$$b = \sqrt{c^2 - a^2}$$

$$b = \sqrt{32^2 - 10^2}$$

$$b = \sqrt{1024 - 100}$$

$$b = \sqrt{924} \text{ or } 30.39 \text{ m}$$

20. Movers are trying to take a large table through a door with the given dimensions. They want to know the length of diagonal AB. What is the length?

Given: a: 36cm, b: 80cm

Solution:

$$c^2 = a^2 + b^2$$

$$c = \sqrt{a^2 + b^2}$$

$$c = \sqrt{4^2 + 10^2}$$

$$c = \sqrt{16 + 100}$$

$$c = \sqrt{116} \text{ or } 2\sqrt{29}$$