Pythagorean Theorem

Unit 11 Lesson 2

Students will be able to:

Understand and use Pythagorean theorem in problems involving the sides of a right triangle. Key Vocabulary:

- Square Roots
- Square of a number
- Right Triangle
- Hypotenuse side

PYTHAGOREAN THEOREM

PYTHAGOREAN THEOREM

One of the most famous theorems in mathematics provides a way to determine the length of one of the sides of a right triangle given the length of the other two.

The theorem was named after Pythagoras, a Greek mathematician. It was believed that he was the first one to present a proof for the relationship. Other's proofs were presented after his time.

PYTHAGOREAN THEOREM

PYTHAGOREAN THEOREM In a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the length of the legs.

$$
c^{2}=a^{2}+b^{2}
$$

PYTHAGOREAN THEOREM

CONVERSE OF THE PYTHAGOREAN THEOREM

If the side of a triangle have lengths a, b, and c such that $c^{2}=a^{2}+b^{2}$, then the triangle is a right triangle.

Example:

Is the triangle whose sides with the given lengths a right triangle?
4, 5, 7
5, 12, 13

PYTHAGOREAN THEOREM

Is the triangle whose sides with the given lengths a right triangle?

$$
4,5,7
$$

Solution:

$$
\begin{aligned}
4^{2}+5^{2} & =7^{2} \\
16+25 & =49 \\
41 & \neq 49
\end{aligned}
$$

Not a Right Triangle

$$
5,12,13
$$

Solution:

$$
\begin{aligned}
5^{2}+12^{2} & =13^{2} \\
25+144 & =169 \\
169 & =169
\end{aligned}
$$

Right Triangle

PYTHAGOREAN THEOREM

Sample Problem 1:

Tell whether the following triangle is a right triangle or not given their sides.

1. 3, 4, 5

Solution:

$$
\begin{array}{r}
3^{2}+4^{2}=5^{2} \\
9+16=25 \\
25=25
\end{array}
$$

Right Triangle
2. 6, 8, 12

Solution:

$$
\begin{array}{r}
6^{2}+8^{2}=12^{2} \\
36+64=144 \\
100 \neq 144
\end{array}
$$

Not a Right Triangle

PYTHAGOREAN THEOREM

Sample Problem 2:

Find the hypotenuse side of the following right triangle.
3. $a=6, b=8$

Solution:

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
c & =\sqrt{a^{2}+b^{2}} \\
c & =\sqrt{6^{2}+8^{2}} \\
c & =\sqrt{36+64} \\
c & =\sqrt{100} \\
c & =10
\end{aligned}
$$

4. $a=4, b=5$

Solution:

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
c & =\sqrt{a^{2}+b^{2}} \\
c & =\sqrt{4^{2}+5^{2}} \\
c & =\sqrt{16+25} \\
c & =\sqrt{41}
\end{aligned}
$$

PYTHAGOREAN THEOREM

Sample Problem 3:

Find the missing sides of the following right triangle given their hypotenuse and one other side.
5. $a=6, c=8$
$6 . b=4, c=5$
Solution:

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& b^{2}=c^{2}-a^{2} \\
& b=\sqrt{c^{2}-a^{2}} \\
& b=\sqrt{8^{2}-6^{2}} \\
& b=\sqrt{64}-36 \\
& b=\sqrt{28} \\
& b=2 \sqrt{7}
\end{aligned}
$$

Solution:

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
a^{2}=c^{2}-b^{2} \\
a=\sqrt{c^{2}-b^{2}} \\
a=\sqrt{5^{2}-4^{2}} \\
a=\sqrt{25-16} \\
a=\sqrt{9} \\
a=3
\end{gathered}
$$

