Rational Numbers Assignment				
Find between which two consecutive integers the following irrational number falls				
1.	$\sqrt{55}$	2.	$\sqrt{42}$	
3.	$\sqrt{13}$	4.	$\sqrt{89}$	
State whether the following numbers are rational or irrational. Give reasons				
5.	0.2727272727	6.	3.8729833462	
7.	4.8989794855	8.	0.88888888888	
Find the value of following irrational numbers up to two decimal points by decimal expansion.				
9.	$\sqrt{2}$	10.	$\sqrt{5}$	
11	$\sqrt{17}$	12.	$\sqrt{10}$	
State true or false				
13	• $\sqrt[3]{8}$ is an irrational number			
	(a) True	(b)	False	
14	. π is a rational number			
	(a) True		(b) False	

Name: ______ Period: _____ Date: _____

15. $\sqrt{20}$ is an irrational number

(a) True (b) False

1

Rational Numbers Assignment

ANSWERS

Find between which two consecutive integers the following irrational number falls

- 1. $\sqrt{55}$
 - The greatest perfect square less than 55 is $49 = 7^2$.
 - The least perfect square greater than 55 is $64 = 8^2$.
 - $\sqrt{55}$ falls between the two consecutive integers, 7 and 8.
- 2. $\sqrt{42}$

The greatest perfect square less than 42 is $36 = 6^2$. The least perfect square greater than 42 is $49 = 7^2$. $\sqrt{42}$ falls between the two consecutive integers, 6 and 7.

3. $\sqrt{13}$

The greatest perfect square less than 13 is $9 = 3^2$. The least perfect square greater than 13 is $16 = 4^2$. $\sqrt{13}$ falls between the two consecutive integers. 3 and 4.

4. $\sqrt{89}$

The greatest perfect square less than 89 is $81 = 9^2$. The least perfect square greater than 89 is $100 = 10^2$. $\sqrt{42}$ falls between the two consecutive integers, 9 and 10.

State whether the following numbers are rational or irrational. Give reasons

5. 0.2727272727....

0.2727272727.... is a rational number as the digits represent a repetitive pattern and the number can also be represented as a simple fraction $\frac{3}{14}$.

6. 3.8729833462....

3.8729833462.... is an irrational number as the digits represents a non-repetitive pattern and the number cannot be represented as a simple fraction.

💸 PreAlgebraCoach.com

7. 4.8989794855....

4.8989794855.... is an irrational number as the digits represents a non-repetitive pattern and the number cannot be represented as a simple fraction.

8. 0.888888888....

0.8888888888.... is a rational number as the digits represent a repetitive pattern and the number can also be represented as a simple fraction $\frac{8}{2}$.

Find the value of following irrational numbers up to two decimal points by decimal expansion.

9.	$\sqrt{2}$
	$\sqrt{2}$ is between the two perfect squares $\sqrt{1}$ and $\sqrt{4}$. So, $\sqrt{2}$ is between 1 and 2. To get more precise we
	will look at the tenths between 1 and 2.
	Is $\sqrt{2}$ is between 1.2 and 1.3 try and check 1.2 ² < 3 < 1.3 ² . But 1.2 ² = 1.44 and 1.3 ² = 1.69 these squares
	are small.
	Is $\sqrt{2}$ is between 1.3 and 1.4 try and check 1.3 ² < 3 < 1.4 ² . But 1.3 ² = 1.69 and 1.4 ² = 1.96 these squares
	are also small.
	Is $\sqrt{2}$ is between 1.4 and 1.5 try and check 1.4 ² < 3 < 1.5 ² . 1.4 ² = 1.96 and 1.5 ² = 2.25;
	$1.96 < 2 < 2.25$ therefore $1.4 < \sqrt{2} < 1.5$ So, $\sqrt{2}$ lies between 1.4 and 1.5.
	For the next decimal look at the tenths between 1.4 and 1.5 by trial and error method we found that
	$\sqrt{2}$ lies between 1.41 and 1.42 as 1.41 ² = 1.9881 and 1.42 ² = 2.0164.

Therefore, first two decimal place values of $\sqrt{2}$ is 1.41....

10. √5

 $\sqrt{5}$ is between the two perfect squares $\sqrt{4}$ and $\sqrt{9}$. So, $\sqrt{5}$ is between 2 and 3. To get more precise we will look at the tenths between 2 and 3.

Is $\sqrt{5}$ is between 2.1 and 2.2 try and check 2.1² < 5 < 2.2². But 2.1² = 4.41 and 2.2² = 4.84 these squares are small.

Is $\sqrt{5}$ is between 2.2 and 2.3 try and check 2.2² < 5 < 2.3²; 2.2² = 4.84 and 2.3² = 5.29;

4.84< 5< 5.29 therefore 2.2< $\sqrt{5}$ < 2.3 so, $\sqrt{5}$ lies between 2.2 and 2.3.

For the next decimal look at the tenths between 2.2 and 2.3 by trial and error method we found that

 $\sqrt{5}$ lies between 2.24 and 2.25 as 2.24² = 4.9952 and 2.25² = 5.0625

<u>Therefore, first two decimal place values of $\sqrt{5}$ is 2.24...</u>

Rational Numbers Assignment

11. $\sqrt{17}$

 $\sqrt{17}$ is between the two perfect squares $\sqrt{16}$ and $\sqrt{25}$. So, $\sqrt{17}$ is between 4 and 5. To get more precise we will look at the tenths between 4 and 5.

Is $\sqrt{17}$ is between 4.1 and 4.2 try and check 4.1² < 7 < 4.2² and 4.1² = 16.81 and 4.2² = 17.64;

16.81 < 17 < 17.64 therefore $4.1 < \sqrt{5} < 4.2$ so, $\sqrt{17}$ lies between 4.1 and 4.2.

For the next decimal look at the tenths between 4.1 and 4.2 by trial and error method we found that

 $\sqrt{17}$ lies between 4.12 and 4.13 as 4.12² = 16.9744 and 4.13² = 17.0569

Therefore, first two decimal place values of $\sqrt{17}$ is 4.12....

12. $\sqrt{10}$

 $\sqrt{10}$ is between the two perfect squares $\sqrt{9}$ and $\sqrt{16}$. So, $\sqrt{10}$ is between 3 and 4. To get more precise we will look at the tenths between 3 and 4.

Is $\sqrt{10}$ is between 3.1 and 3.2 try and check $3.1^2 < 10 < 3.2^2$ and $3.1^2 = 9.61$ and $3.2^2 = 10.24$;

9.61 < 10 < 10.24 therefore $3.1 < \sqrt{10} < 3.2$ so, $\sqrt{10}$ lies between 3.1 and 3.2.

For the next decimal look at the tenths between 3.1 and 3.2 by trial and error method we found that

 $\sqrt{10}$ lies between 3.16 and 3.17 as 3.16² = 9.9856 and 3.17² = 10.0489

Therefore, first two decimal place values of $\sqrt{10}$ is 3.16....

State true or false

- **13.** $\sqrt[3]{8}$ is an irrational number
- (a) True
 (b) False
 14. π is a rational number
 (a) True
 (b) False
 15. √20 is an irrational number
 (a) True
 (b) False

💸 PreAlgebraCoach.com