\qquad
\qquad Date: \qquad

Rational Numbers Assignment

Find between which two consecutive integers the following irrational number falls

1. $\sqrt{55}$
2. $\sqrt{42}$
3. $\sqrt{13}$
4. $\sqrt{89}$

State whether the following numbers are rational or irrational. Give reasons
5. 0.2727272727
6. $3.8729833462 \ldots$...
7. $4.8989794855 \ldots$...
8. 0.8888888888

Find the value of following irrational numbers up to two decimal points by decimal expansion.
9. $\sqrt{2}$
10. $\sqrt{5}$
11. $\sqrt{17}$
12. $\sqrt{10}$

State true or false
13. $\sqrt[3]{8}$ is an irrational number
(a) True
(b) False
14. π is a rational number
(a) True
(b) False
15. $\sqrt{20}$ is an irrational number
(a) True
(b) False
\qquad Period: \qquad Date: \qquad

Rational Numbers Assignment

ANSWERS

Find between which two consecutive integers the following irrational number falls

1. $\sqrt{55}$

The greatest perfect square less than 55 is $49=7^{2}$.
The least perfect square greater than 55 is $64=8^{2}$.
$\sqrt{55}$ falls between the two consecutive integers, 7 and 8 .
2. $\sqrt{42}$

The greatest perfect square less than 42 is $36=6^{2}$.
The least perfect square greater than 42 is $49=7^{2}$.
$\sqrt{42}$ falls between the two consecutive integers, 6 and 7 .
3. $\sqrt{13}$

The greatest perfect square less than 13 is $9=3^{2}$.
The least perfect square greater than 13 is $16=4^{2}$.
$\sqrt{13}$ falls between the two consecutive integers, 3 and 4 .
4. $\sqrt{89}$

The greatest perfect square less than 89 is $81=9^{2}$.
The least perfect square greater than 89 is $100=10^{2}$. $\sqrt{42}$ falls between the two consecutive integers, 9 and 10.

State whether the following numbers are rational or irrational. Give reasons
5. 0.2727272727
$0.2727272727 \ldots$ is a rational number as the digits represent a repetitive pattern and the number can also be represented as a simple fraction $\frac{3}{11}$.
6. 3.8729833462....
3.8729833462.... is an irrational number as the digits represents a non-repetitive pattern and the number cannot be represented as a simple fraction.
\qquad Date: \qquad

Rational Numbers Assignment

7. 4.8989794855....
4.8989794855.... is an irrational number as the digits represents a non-repetitive pattern and the number cannot be represented as a simple fraction.
8. 0.8888888888
$\underline{0.8888888888 \ldots . . . \text { is a rational number as the digits represent a repetitive pattern and the number can }}$ also be represented as a simple fraction $\frac{8}{9}$.

Find the value of following irrational numbers up to two decimal points by decimal expansion.
9. $\sqrt{2}$
$\sqrt{2}$ is between the two perfect squares $\sqrt{1}$ and $\sqrt{4}$. So, $\sqrt{2}$ is between 1 and 2 . To get more precise we will look at the tenths between 1 and 2 .
Is $\sqrt{2}$ is between 1.2 and 1.3 try and check $1.2^{2}<3<1.3^{2}$. But $1.2^{2}=1.44$ and $1.3^{2}=1.69$ these squares are small.
Is $\sqrt{2}$ is between 1.3 and 1.4 try and check $1.3^{2}<3<1.4^{2}$. But $1.3^{2}=1.69$ and $1.4^{2}=1.96$ these squares are also small.

Is $\sqrt{2}$ is between 1.4 and 1.5 try and check $1.4^{2}<3<1.5^{2} .1 .4^{2}=1.96$ and $1.5^{2}=2.25$;
$1.96<2<2.25$ therefore $1.4<\sqrt{2}<1.5$ So,$\sqrt{2}$ lies between 1.4 and 1.5.
For the next decimal look at the tenths between 1.4 and 1.5 by trial and error method we found that
$\sqrt{2}$ lies between 1.41 and 1.42 as $1.41^{2}=1.9881$ and $1.42^{2}=2.0164$.
Therefore, first two decimal place values of $\sqrt{2}$ is 1.41
10. $\sqrt{5}$
$\sqrt{5}$ is between the two perfect squares $\sqrt{4}$ and $\sqrt{9}$. So,$\sqrt{5}$ is between 2 and 3 . To get more precise we will look at the tenths between 2 and 3 .
Is $\sqrt{5}$ is between 2.1 and 2.2 try and check $2.1^{2}<5<2.2^{2}$. But $2.1^{2}=4.41$ and $2.2^{2}=4.84$ these squares are small.
Is $\sqrt{5}$ is between 2.2 and 2.3 try and check $2.2^{2}<5<2.3^{2} ; 2.2^{2}=4.84$ and $2.3^{2}=5.29$;
$4.84<5<5.29$ therefore $2.2<\sqrt{5}<2.3$ so, $\sqrt{5}$ lies between 2.2 and 2.3.
For the next decimal look at the tenths between 2.2 and 2.3 by trial and error method we found that $\sqrt{5}$ lies between 2.24 and 2.25 as $2.24^{2}=4.9952$ and $2.25^{2}=5.0625$
Therefore, first two decimal place values of $\sqrt{5}$ is $2.24 \ldots$.
\qquad Date: \qquad

Rational Numbers Assignment

11. $\sqrt{17}$
$\sqrt{17}$ is between the two perfect squares $\sqrt{16}$ and $\sqrt{25}$. So, $\sqrt{17}$ is between 4 and 5 . To get more precise we will look at the tenths between 4 and 5 .
Is $\sqrt{17}$ is between 4.1 and 4.2 try and check $4.1^{2}<7<4.2^{2}$ and $4.1^{2}=16.81$ and $4.2^{2}=17.64$;
$16.81<17<17.64$ therefore $4.1<\sqrt{5}<4.2$ so,$\sqrt{17}$ lies between 4.1 and 4.2.
For the next decimal look at the tenths between 4.1 and 4.2 by trial and error method we found that
$\sqrt{17}$ lies between 4.12 and 4.13 as $4.12^{2}=16.9744$ and $4.13^{2}=17.0569$
Therefore, first two decimal place values of $\sqrt{17}$ is $4.12 \ldots$
12. $\sqrt{10}$
$\sqrt{10}$ is between the two perfect squares $\sqrt{9}$ and $\sqrt{16}$. So, $\sqrt{10}$ is between 3 and 4 . To get more precise we will look at the tenths between 3 and 4 .
Is $\sqrt{10}$ is between 3.1 and 3.2 try and check $3.1^{2}<10<3.2^{2}$ and $3.1^{2}=9.61$ and $3.2^{2}=10.24$;
$9.61<10<10.24$ therefore $3.1<\sqrt{10}<3.2$ so,$\sqrt{10}$ lies between 3.1 and 3.2.
For the next decimal look at the tenths between 3.1 and 3.2 by trial and error method we found that
$\sqrt{10}$ lies between 3.16 and 3.17 as $3.16^{2}=9.9856$ and $3.17^{2}=10.0489$
Therefore, first two decimal place values of $\sqrt{10}$ is 3.16 ...

State true or false

13. $\sqrt[3]{8}$ is an irrational number
(a) True
(b) False
14. π is a rational number
(a) True
(b) False
15. $\sqrt{20}$ is an irrational number
(a) True
(b) False
