\qquad Period: \qquad Date: \qquad

Irrational Numbers Exit Quiz

Part A Instructions: Choose the option to answer the questions.

1. If a whole number is not a perfect square, then its square root is
(a) Natural Number
(b) Whole Number
(c) Rational Number
(d) Irrational Number
2. \qquad is a real number that cannot be written as a simple fraction.
(a) Rational Number
(b) Irrational Number
(c) Positive integer
(d) Negative integer
3. The number $\sqrt[3]{27}$ is -
(a) Rational Number
(b) Irrational Number
(c) Whole Number
(d) Natural Number
4. The number 65.8904156.... is -
(a) Whole Number
(b) Rational Number
(c) Irrational Number
(d) Natural Number

Part B Instructions: Answer the question below.
5. Find between which two consecutive integers the irrational number $\sqrt{\mathbf{1 1}}$ falls.
\qquad Period: \qquad Date: \qquad

Irrational Numbers Exit Quiz
 ANSWERS

Part A Instructions: Choose the option to answer the questions.

1. If a whole number is not a perfect square, then its square root is
(a) Natural Number
(b) Whole Number
(c) Rational Number
(d) Irrational Number
2. \qquad is a real number that cannot be written as a simple fraction.
(a) Rational Number
(b) Irrational Number
(c) Positive integer
(d) Negative integer
3. The number $\sqrt[3]{27}$ is -
(a) Rational Number
(b) Irrational Number
(c) Whole Number
(d) Natural Number
4. The number 65.8904156.... is -
(a) Whole Number
(b) Rational Number
(c) Irrational Number
(d) Natural Number

Part B Instructions: Answer the question below.
5. Find between which two consecutive integers the irrational number $\sqrt{\mathbf{1 1}}$ falls.

The greatest perfect square less than 11 is $9=3^{2}$.
The least perfect square greater than 11 is $16=4^{2}$.
$\sqrt{11}$ falls between the two consecutive integers, 3 and 4 .

