#### **Complete the Pass:** Solving Systems by Graphing

\_\_\_\_\_ Period: \_\_\_\_\_ Date: \_\_\_\_\_

Have you ever watched a baseball game or ran to catch a football? When two lines intersect on a coordinate plane, the point where they cross is the solution to a system of equations. The equations share that coordinate pair! Today you will sketch some graphs to Complete the Pass and solve systems by graphing. Go out for a pass!

1. On the coordinate plane below, sketch the path of the runner and a different line for the path of the ball. (Do not worry, it doesn't have to be exact, just a sketch of the two paths and where they cross)

Note to designer, provide a blank coordinate plane, similar to the one shown below. You can even show an X where the "runner" starts and a target point where the runner should catch the pass



2. In your own words, how would you describe a system of equations?

#### \_\_\_\_\_ Period: \_\_\_\_\_ Date: \_

## Math 8

Complete the Pass: Solving Systems by Graphing



- 4. What is the solution to this system?
- 5. For the following systems:
  - a. indicate which has
    - i. one solution,
    - ii. no solution, or
    - iii. infinite solutions







### **Complete the Pass:** Solving Systems by Graphing

Math 8

# Complete the Pass: Solving Systems by Graphing Activity

Work with your partner.

# ROUND 1 - Hit the Target, Make the Pass

- 1. Graph the "Runner" Equation in BLUE. Choose at least 2 points or graph it with the y intercept and slope.
- 2. Mark the indicated "catching" coordinate with an X.
- 3. Choose from the 3 "Passer" Equations to find the line that solves the system.

| Runner Equation: y = x + 2<br>Target : (2,4) | Passer Equations - graph and circle the best choice |
|----------------------------------------------|-----------------------------------------------------|
| 6                                            | y= x + 2                                            |
| 4                                            | y=-x + 2                                            |
| 2                                            | y= -x + 6                                           |
|                                              |                                                     |

| Runner Equation: $y = \frac{1}{2}x + 2$ | Passer Equations - graph and circle the best choice |
|-----------------------------------------|-----------------------------------------------------|
| Target : (4,5)                          |                                                     |

| Name:                                         | Period: Date: |
|-----------------------------------------------|---------------|
| Complete the Pass: Solving Systems by Graphin | ng Math 8     |
| 6                                             | y = 2x - 3    |
| 4                                             | y= 2x + 1     |
| 2                                             | y= -1/2x + 6  |
| 8 -6 -4 -2 0 2 4 6 8                          |               |
| 2                                             |               |
| -4                                            |               |
| -6                                            |               |

ROUND 2: Choose the BEST line to complete the pass

- 1. Draw the "runner" graph.
- 2. There is NO TARGET, you must choose the equation that will complete the pass within the coordinate plane provided.
- 3. Find the solution to the system of equations by graphing.
- 4. Check the coordinates to see that it is a solution to the equation.





#### **Reflection and Practice**

How do you know if there will be no solution? What does that mean about the lines and the equations of the lines?

Can you have 2 lines with a positive slope that cross or have one solution?

If one line has a positive slope and the other has a negative slope will that system always have only one solution?

Circle the solutions to the following system. Write the coordinate pairs. Label each line with the matching equation

